सौर तूफानों को समझना: भारत का सौर भौतिकी और अंतरिक्ष मौसम की भविष्यवाणी पर ज़ोर

UPSC प्रासंगिकताः

- GS पेपर 3: विज्ञान और प्रौद्योगिकी अंतरिक्ष अनुसंधान, अंतरिक्ष के क्षेत्र में जागरूकता।
- प्रीतिम्स तिंक: आदित्य-एला मिशन, कोरोनल मास इजेक्शन (CMEs), सौर ज्वालाएँ (Solar Flares), अंतरिक्ष मौसम (Space Weather)।

रवबरों में क्यों?

- इसरो (ISRO) का आदित्य-एल। मिशन भारत की पहली समर्पित सौर वेधशाला — सौर भौतिकी अनुसंधान में भारत की प्रगति को गति दे रहा है।
- हाल ही में, आर्यभट्ट रिसर्च इंस्टीट्यूट ऑफ ऑब्जर्वेशनल साइंसेज (ARIES) के वैज्ञानिकों ने सौर विस्फोटों जैसे कि सौर ज्वालाएँ और कोरोनल मास इजेक्शन (CMEs) के पृथ्वी पर प्रभावों पर अपनी अंतर्टिष्टियाँ साझा की हैं।

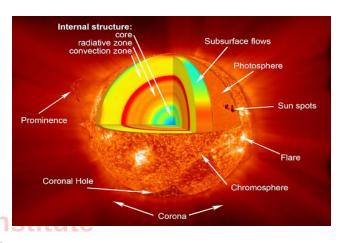
पृष्ठभूमि

सूर्य लगातार ऊर्जा और आवेशित कणों का उत्सर्जन करता है, जो पृथ्वी के चारों ओर के अंतरिक्ष वातावरण और **अंतरिक्ष मौसम** को आकार देते हैं।

- शौर ज्वालाएँ और CMEs जैसी घटनाएँ **भू-चुंबकीय तूफानों (Geomagnetic Storms**) का कारण बन सकती हैं।
- ये तूफ़ान उपग्रहों, जीपीएस प्रणाली, बिजली ब्रिड और रेडियो संचार को प्रभावित कर सकते हैं।
- भारत की बढ़ती अंतरिक्ष-आधारित बुनियादी ढाँचे को देखते हुए, सौर गतिविधियों को समझना रणनीतिक और वैज्ञानिक रूप से आवश्यक बन गया है।

मुख्य अवधारणाएँ: सौर घटनाओं को समझना

1. कोरोनल मास इजेक्शन (CMEs)


- CMEs सूर्य के सबसे शक्तिशाली विस्फोट हैं, जिनमें बड़ी मात्रा में गैस और प्लाज्मा उत्सर्जित होती हैं।
- सटीक कारण पूरी तरह से ज्ञात नहीं हैं, लेकिन सूर्य का चुंबकीय क्षेत्र इसमें मुख्य भूमिका निभाता हैं।
- अध्ययन का महत्व: CMEs सूर्य पर कहीं भी हो सकते हैं, लेकिन जो फोटोस्फीयर (सूर्य की दृश्य सतह) के केंद्र के पास उत्पन्न होते हैं, वे पृथ्वी की ओर सीधे यात्रा कर सकते हैं।
- पृथ्वी पर प्रभाव: शिक्तशाली CMEs उपग्रहों को नुकसान पहुँचा सकते हैं, रेडियो संचार बाधित कर सकते हैं और भू-चुंबकीय तूफान पैदा कर सकते हैं।

भू-चूंबकीय तूफ़ान और अरोरा

- भू-चुंबकीय तूफान: पृथ्वी के चुंबकीय क्षेत्र में
 उत्पन्न गड़बड़ी, जो ध्रुवों के पास सौर ऊर्जा और कणों के प्रवेश से होती हैं।
- अरोरा: कुछ CME ऊर्जा चुंबकीय रेखाओं के साथ पृथ्वी के वायुमंडल में प्रवेश करती हैं। कण गैंसों के साथ क्रिया करके रंगीन रोशनी उत्पन्न करते हैं।

• उत्तरी रोशनी: ऑरोरा बोरियातिस

• दक्षिणी रोशनी: ऑरोरा ऑस्ट्रेलियासिस

3. सौर ज्वालाएँ (Solar Flares)

- सूर्य की सतह पर अचानक होने वाले तीव्र विस्फोट।
- सनस्पॉट के चारों ओर मुड़े हुए चुंबकीय क्षेत्रों से ऊर्जा निकलने पर होती हैं।
- एक्स-रे और गामा किरणों सहित पूरे विद्युत-चुम्बकीय स्पेक्ट्रम में विकिरण उत्सर्जित करती हैं।

4. सौर पवन (Solar Wind)

- कोरोना से निरंतर बहने वाले आवेशित कण।
- हेतियोरफीयर (सौर प्रभाव का बुलबुला) को आकार देते हैं और ग्रहों के चुंबकीय क्षेत्रों के साथ क्रिया करते हैं।

सूर्य की संरचना (Anatomy of the Sun)	
भाग	विवरण रिजल्ट का साथी
कोर (Core) @resultmitra	थर्मोन्यूवितयर अभिक्रियाओं का केंद्र, जहाँ अत्यधिक ऊर्जा और
	तापमान् उत्पन्न होता है। 🔘 ९२३५३१३१८४, ९२३५४४०८०६
विकिरणी क्षेत्र (Radiative Zone)	ऊर्जा धीरे-धीरे बाहर बढ़ती हैं; पार करने में 1,70,000 वर्ष तक
	लग सकते हैं।
संवहनी क्षेत्र (Convection Zone)	ऊर्जा गर्म और ठंडी गैस की संवहन धाराओं से सतह तक
	पहुँचती हैं।
क्रोमोर्ग्णियर (Chromosphere)	पतली परत, चुंबकीय क्षेत्रों द्वारा आकारित; प्रॉमिनेंस कभी-कभी
	कोरोना तक फैल सकती हैं।
कोरोना (Corona)	सूर्य का बाहरी वायुमंडल, X-ray और पराबैंगनी प्रकाश में
	चमकती हैं।
कोरोनल स्ट्रीमर्स (Coronal	प्लाज्मा चुंबकीय रेखाओं के साथ बहता हैं, लाखों मील तक
Streamers)	फैली आकृतियाँ बनाता हैं।
सनस्पॉट (Sunspots)	सूर्य की सतह पर गहरे, ठंडे क्षेत्र, स्थानीय चुंबकीय गतिविधि के
	क्राज्य

अनुसंधान का महत्व

- 1. अंतरिक्ष संपत्तियों की सुरक्षाः भारत के कक्षा में 50+ सक्रिय उपग्रह हैं। CMEs का सही पूर्वानुमान उपग्रह स्वास्थ्य, संचार और नेविगेशन की सटीकता के लिए महत्वपूर्ण हैं।
- 2. रण<mark>नीतिक महत्वः</mark> विश्वसनीय अंतरिक्ष मौसम भविष्यवाणी राष्ट्रीय सुरक्षा और रक्षा अभियानों का समर्थन करती हैं।
- 3. वैज्ञानिक उन्नित: आदित्य-एल। मिशन और ARIES अनुसंधान भारत को वैश्विक सौर अनुसंधान नेटवर्कों में योगदान करने में सक्षम बनाते हैं।
- 4. **मानव संसाधन विकास :** ISRO और ARIES ने प्रारंभिक-करियर शोधकर्ताओं और पीएचडी छात्रों के तिए 10+ कार्यशालाएँ आयोजित की हैं, जिससे घरेलू प्रतिभा का निर्माण हो रहा है।

सोर भौतिकी अनुसंधान में चुनौतियाँ

- CME गतिशीलता की अपूर्ण समझ: उत्पत्ति और सौर पवन के साथ क्रिया का ज्ञान सीमित।
- अस्पष्ट चुंबकीय संरचनाएँ: CMEs की आंतिरक संरचना जिटल, जिससे प्रक्षेपवक्र की भविष्यवाणी मुश्किल।
- कं<mark>प्यूटेशनल बाधाएँ:</mark> उच्च-रिज़ॉल्यूशन सौर सिमुलेशन के लिए सुपरकंप्यूटर नेटवर्क का अभाव।
- सीमित संकाय और बुनियादी ढाँचा: केवल 65 संकाय और 229 शोधकर्ता सौर भौतिकी में विशेषज्ञ।

आगे की राह (Way Forward)

- 1. स्वदेशी भविष्यवाणी मॉडल: अगले 10–15 वर्षों में AI-आधारित CME और सौर ज्वालाओं का भविष्यवाणी सिस्टम।
- 2. अनुसंधान और प्रशिक्षण का विस्तार: अधिक शैक्षणिक कार्यक्रम और अनुसंधान केंद्र।
- 3. सुपरकंप्यूटिंग निवेश: समर्पित सुविधाएँ सिमुलेशन सटीकता बढ़ाएंगी।४४, ९२३५४४०८०६
- 4. <mark>सार्वजनिक और निजी सहयोग:</mark> निजी क्षेत्र नवाचार और डेटा मॉडिलंग में मदद करेगा।
- 5. <mark>अंतर्राष्ट्रीय भागीदारी:</mark> वैश्विक डेटा साझा करने और तत्परता बढ़ाने में सहयोग।

निष्कर्ष

- आदित्य-एला और ARIES पहलों के माध्यम से भारत का सौर भौतिकी में निवेश अंतरिक्ष मौसम पूर्वानुमान में आत्मनिर्भरता की दिशा में महत्वपूर्ण कदम हैं।
- वैज्ञानिक नवाचार, कंप्यूटेशनल शक्ति और कुशल जनशक्ति के संयोजन से भारत सौर-स्थलीय संबंध को समझने में वैश्विक नेता बन सकता है।

 इससे भारत की अंतरिक्ष संपत्तियों की सुरक्षा और संचार एवं नेविगेशन नेटवर्क की स्थिरता सुनिश्चित होगी।

युपीएससी प्रीतिम्स अभ्यास प्रश्त:

प्रश्त 1: सूर्य-पृथ्वी प्रणाली में लैग्रेंज बिंदुओं (Lagrange Points) के संदर्भ में, निम्नलिखित कथनों पर विचार करें:

- वे ऐसे बिंदु हैं जहाँ सूर्य और पृथ्वी के गुरुत्वाकर्षण बल एक अंतिरक्ष यान की कक्षीय गति को संतुलित करते हैं।
- 2. L1 बिंदु पर रखा गया एक अंतरिक्ष यान पृथ्वी के ग्रहण हस्तक्षेप के बिना लगातार सूर्य का निरीक्षण कर सकता हैं।
- 3. L4 और L5 बिंदुओं को अस्थिर माना जाता है और वे लंबे समय तक अंतरिक्ष यान की मेज़बानी नहीं कर सकते हैं। | AS-PGS | INSTITUTE

कौन सा/से कथन सही हैं?

- A. केवल १ और 2
- B. केवल २ और ३
- C. केवल 1
- D. 1, 2 और 3

उत्तर: A व्याख्या:

- L1 बिंदु सूर्य का निरंतर अवलोकन करने के लिए आदर्श हैं।
- L4 और L5 स्थिर लैंब्रेंज बिंदु हैं, यानी ये लंबी अवधि तक अंतरिक्ष यान को संभाल सकते हैं। इसलिए कथन ३ गलत हैं।

प्रश्त 2: भारत की अंतरिक्ष पहलों के संदर्भ में, निम्नलिखित में से कौन सा कथन नेशनल लार्ज सोलर टेलीस्कोप (NLST) परियोजना का सही वर्णन करता हैं?

A. यह बाहरी और कोरोना का अध्ययन करने के तिए डिज़ाइन किया गया एक अंतरिक्ष-आधारित दूरबीन हैं।

- B. यह उच्च रिज़ॉल्यूशन के साथ सूर्य के निचले वायुमंडल का अध्ययन करने के लिए प्रस्तावित एक ज़मीन-आधारित दूरबीन हैं। (**) www.resultmitra.com (**) 9235313184, 9235440806
- C. यह इंटरस्टेलर चुंबकीय क्षेत्रों का अध्ययन करने के लिए विकसित भारत की पहली रेडियो दूरबीन हैं।
- D. यह पृथ्वी के निकट के क्षुद्रब्रहों की निगरानी के लिए भारत और नासा के बीच एक सहयोगी परियोजना हैं।

उत्तर: B व्याख्या:

- NLST भारतीय अंतरिक्ष अनुसंधान और एस्ट्रोफिजिक्स के क्षेत्र में इंडियन इंस्टीट्यूट ऑफ एस्ट्रोफिजिक्स द्वारा प्रस्तावित एक ज़मीन-आधारित दूरबीन परियोजना हैं।
- इसका उद्देश्य सूर्य के निचले वायुमंडल का उच्च-रिज़ॉल्यूशन अध्ययन करना है।

मुख्य परीक्षा अभ्यास-प्रश्त

"भारत का आदित्य-एत। मिशन सौर भौतिकी और अंतरिक्ष मौसम पूर्वानुमान में आत्मनिर्भरता की दिशा में एक महत्वपूर्ण कदम हैं। इस मिशन के अंतर्गत अध्ययन की गई प्रमुख सौर परिघटनाओं, पृथ्वी के तकनीकी ढाँचे पर उनके प्रभाव और उनकी भविष्यवाणी करने में आने वाली चुनौतियों पर चर्चा कीजिए।" (250 शब्द)

IAS-PCS Institute



